Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 136: 108918, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202052

RESUMO

OBJECTIVE: To investigate carotid body (CB) mechanisms related to sudden death during seizure. Ictal activation of oxygen-conserving reflexes (OCRs) can trigger fatal cardiorespiratory collapse in seizing rats, which presents like human sudden unexpected death in epilepsy (SUDEP). The CB is strongly implicated in OCR pathways; we hypothesize that modulating CB activity will provide insight into these mechanisms of death. METHODS: Long-Evans rats were anesthetized with urethane. Recordings included: electrocorticography, electrocardiography, respiration via nasal thermocouple, and blood pressure (BP). The mammalian diving reflex (MDR) was activated by cold water delivered through a nasal cannula. Reflex and stimulation trials were repeated up to 16 times (4 pre-intervention, 12 post-intervention) or until death. In some animals, one or both carotid bodies were denervated. In some animals, the CB was electrically stimulated, both with and without MDR. Seizures were induced with kainic acid (KA). RESULTS: Animals without seizure and with no CB modulation survived all reflexes. Non-seizing animals with CB denervation survived 7.1 ± 5.4 reflexes before death, and only 1 of 7 survived past the 12-trial threshold. Electrical CB stimulation without seizure and without reflex caused significant tachypnea and hypotension. Electrical CB stimulation with seizure and without reflex required higher amplitudes to replicate the physiological responses seen outside seizure. Seizing animals without CB intervention survived 3.2 ± 3.6 trials (per-reflex survival rate 42.0% ± 44.4%), and 0 of 7 survived past the 12-trial threshold. Seizing animals with electrical CB stimulation survived 10.5 ± 4.7 ictal trials (per-reflex survival rate 86.3% ± 35.0%), and 6 of 8 survived past the 12-trial threshold. SIGNIFICANCE: These results suggest that, during seizure, the ability of the CB to stimulate a restart of respiration is impaired. The CB and its afferents may be relevant to fatal ictal apnea and SUDEP in humans, and CB stimulation may be a relevant intervention technique in these deaths.


Assuntos
Corpo Carotídeo , Epilepsia , Morte Súbita Inesperada na Epilepsia , Humanos , Animais , Ratos , Ratos Long-Evans , Morte Súbita/etiologia , Epilepsia/induzido quimicamente , Epilepsia/complicações , Epilepsia/terapia , Convulsões , Mamíferos
2.
Epilepsia ; 62(3): 752-764, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570173

RESUMO

OBJECTIVE: To test the hypothesis that death with physiological parallels to human cases of sudden unexpected death in epilepsy (SUDEP) can be induced in seizing rats by ictal activation of oxygen-conserving reflexes (OCRs). METHODS: Urethane-anesthetized female Long-Evans rats were implanted with electrodes for electrocardiography (ECG), electrocorticography (ECoG), and respiratory thermocouple; venous and arterial cannulas; and a laryngoscope guide and cannula or nasal cannula for activation of the laryngeal chemoreflex (LCR) or mammalian diving reflex (MDR), respectively. Kainic acid injection, either systemic or into the ventral hippocampus, induced prolonged acute seizures. RESULTS: Reflex challenges during seizures caused sudden death in 18 of 20 rats-all MDR rats (10) and all but two LCR rats (8) failed to recover from ictal activation of OCRs and died within minutes of the reflexes. By comparison, 4 of 4 control (ie, nonseizing) rats recovered from 64 induced diving reflexes (16 per rat), and 4 of 4 controls recovered from 64 induced chemoreflexes (16 per rat). Multiple measures were consistent with reports of human SUDEP. Terminal central apnea preceded terminal asystole in all cases. Heart and respiratory rate fluctuations that paralleled those seen in human SUDEP occurred during OCR-induced sudden death, and mean arterial pressure (MAP) was predictive of death, showing a 17 or 15 mm Hg drop (MDR and LCR, respectively) in the 20 s window centered on the time of brain death. OCR activation was never fatal in nonseizing rats. SIGNIFICANCE: These results present a method of inducing sudden death in two seizure models that show pathophysiology consistent with that observed in human cases of SUDEP. This proposed mechanism directly informs previous findings by our group and others in the field; provides a repeatable, inducible animal model for the study of sudden death; and offers a potential explanation for observations made in cases of human SUDEP.


Assuntos
Reflexo/fisiologia , Convulsões/fisiopatologia , Morte Súbita Inesperada na Epilepsia/etiologia , Animais , Reflexo de Mergulho/fisiologia , Eletrocardiografia , Eletrodos Implantados , Eletroencefalografia , Eletroculografia , Feminino , Frequência Cardíaca , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Ratos , Ratos Long-Evans , Taxa Respiratória
3.
Epilepsy Behav ; 111: 107188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32540771

RESUMO

OBJECTIVE: Recent animal work and limited clinical data have suggested that laryngospasm may be involved in the cardiorespiratory collapse seen in sudden unexpected death in epilepsy (SUDEP). In previous work, we demonstrated in an animal model of seizures that laryngospasm and sudden death were always preceded by acid reflux into the esophagus. Here, we expand on that work by testing several techniques to prevent the acid reflux or the subsequent laryngospasm. METHODS: In urethane anesthetized Long Evans rats, we used systemic kainic acid to acutely induce seizure activity. We recorded pH in the esophagus, respiration, electrocorticography activity, and measured the liquid volume in the stomach postmortem. We performed the following three interventions to attempt to prevent acid reflux or laryngospasm and gain insights into mechanisms: fasting animals for 12 h, severing the gastric nerve, and electrical stimulation of either the gastric nerve or the recurrent laryngeal nerve. RESULTS: Seizing animals had significantly more liquid in their stomach. Severing the gastric nerve and fasting animals significantly reduced stomach liquid volume, subsequent acid reflux, and sudden death. Laryngeal nerve stimulation can reverse laryngospasm on demand. Seizing animals are more susceptible to death from stomach acid-induced laryngospasm than nonseizing animals are to artificial acid-induced laryngospasm. SIGNIFICANCE: These results provide insight into the mechanism of acid production and sudden obstructive apnea in this model. These techniques may have clinical relevance if this model is shown to be similar to human SUDEP.


Assuntos
Terapia por Estimulação Elétrica/métodos , Refluxo Gastroesofágico/prevenção & controle , Refluxo Gastroesofágico/fisiopatologia , Laringismo/fisiopatologia , Convulsões/fisiopatologia , Animais , Feminino , Refluxo Gastroesofágico/complicações , Laringismo/etiologia , Laringismo/terapia , Ratos , Ratos Long-Evans , Convulsões/terapia , Morte Súbita Inesperada na Epilepsia/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...